

Energy consumption and GHG emissions for the different scenarios.										
	Ener	gy consumpt	tion (per km)	GHG emissions (Kg/km)						
Reference zone	MJ per	% of the reference * ¹⁶	% of reductions* ¹⁶	Kg CO ₂ -eq	% of the reference * ¹⁶	% of reductions ^{*16}				
South . (Tandil)	0,6450	26,8	73,2	0,047	24,5	75,5				
	0,5715	23,8	76,2	0,0385	21,1	78,9				
Aires./Souther n (Pergamino)	0,5435	22,6	77,4	0,0342	18,7	81,3				
. Aires (Pehuajo)	0,5745	23,9	76,9	0,0344	19,9	80,1				
Southern Córdoba ()	0,5648	23,5	76,5	0,0341	18,7	81,3				
Salta (Las Lajitas)	0,6419	26,7	73,3	0,0394	21,6	78,4				

DOMESTIC MARKE		CALCULO DE LA R EMISIONES PROD	EDUCCION DE UCIDA POR EL	Fecha: 24/08/2011			
DOMESTIC MARKE			CORTE OBLIGA	TORIO Y LA			
		2			N° Doc BC-		
Diesel emissions (InCO2)	1.519.196		AROLIN		INF-11-11		
			Ing. Agr. Jorge A	ntonio Hilbert			
Biodiesel Min (TnCO2)	363.099		ng. nd. Sebasit				
			100 C				
Biodiesel Max (TnCO2)	<i>4</i> 50 010		0				
	407.010			11			
Max Reduction (TnCO2)	1.156.097			ID	-175-		
Min reduction (TnCO2)	1.060.186						
		VTEDNAL	MADLE	- A ANTINE	7 IT		
		WATERATI I I I					
The second se	Diese	Diesel emissions (Tr		3.984.21			
					071.004		
	BIOG	lesel Min (Inc	sel Min (InCO2)		971.984		
					_		
	Biodie	Biodiesel Max (TnCO2)			1.223.519		
	Max	Reduction (Tn	duction (InCO2)		3.012.227		
	Min reduction (TnCO2)		:02)	2.760.692			
	States and		Contract of Street		And the other		
VIII TO THE PARTY	The second						

CERTIFICATION IN ARGENTINA

Productive and environmental quality management system in CA (QMS/CA) GAP's

AAPRESID THE NATIONAL PRIVATE ASOCIATION OF NO TILLAGE FARMERS IS PROMOTING A NEW CERTIFICATION PROCESS

Why?

Because there are scientific fundamentals that correlate soil health indicator values with agronomical practices Because there are distinctive advantages of Argentina's type of farming that must be proved and exported.

PRINCIPAL PRODUCTS

- Introduction argentina soybean case study
- Soybean market and derivates context & recent evolution (133 pages)
- Public perception of biofuels in Argentina (114 pages)
- Defining go and no go areas for biodiesel feedstok production in argentina
- Public perception assesment on biofuels (164 pages)
- Progress of sustainability certification in argentina (24 pages)
- Data for global assessments and guidelines for sustainable liquid biofuels production (Utrech contract study) 2011 (121 pages)

