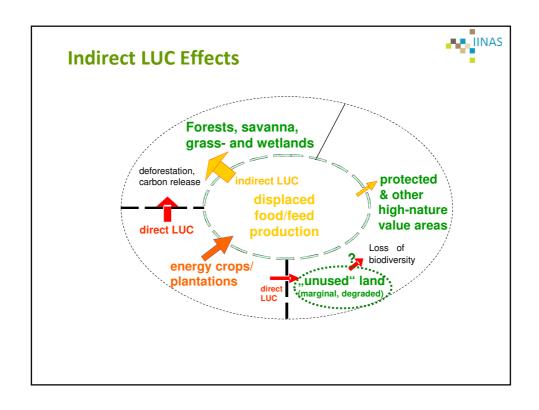
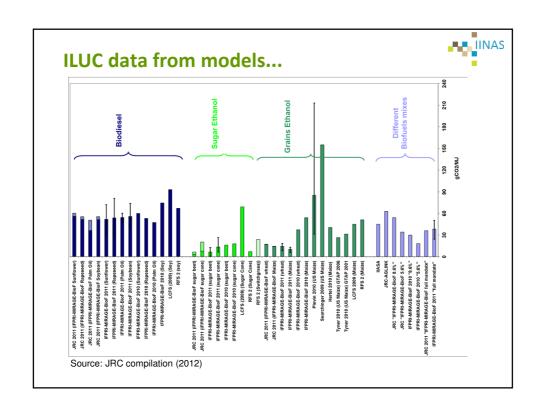

Recent Developments on iLUC Policies

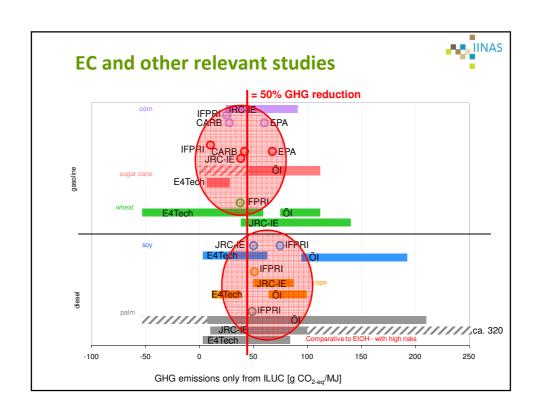

Uwe R. Fritsche

Scientific Director, IINAS

International Institute for Sustainability Analysis and Strategy

presented at the Global Bio-Pact Conference "Socio-economic Impacts of Biofuels and Bio-products" Brussels, January 29-30, 2013





Indirect LUC

- <u>All</u> incremental use of fertile land imply indirect effects
- indirect LUC of bioenergy = direct LUC of agriculture/forestry
- real world only knows direct LUC
- Distinguish between analytical (science) vs. regulatory (policy)
- iLUC factor = proxy for regulation (EU, US...)

Key Findings on iLUC and Policies

- Broad variation of ILUC emissions...but:
 ILUC effects have significant impact on GHG balance of biofuels
- Current science allows quantitative approximation of GHG emissions from ILUC, differentiated for various biofuels → precautional approach + scientific updates!
- Already US regulations (RFS2, CARB) include quantitative ILUC values. EC proposal does not properly reflect US rulemaking on ILUC.
- Stricter policies on bioenergy land use support could achieve significant GHG savings – but at higher cost
- Need to consider grandfarthering: 2008 cut-off year

iLUC: Dynamic View on Policies

- Future iLUC can become low:
 - Dampening ILUC through REDD (if adequately implemented and financed)
 - "free" land from intensification (baseline, tradeoffs!)
 - LUC policies in key countries (AR, BR, ID...)
- Prioritizing low-iLUC feedstocks:
 - wastes/residues (2nd generation), e.g. EC proposal
 - unused + degraded land (+ biodiversity/social safeguards)
- iLUC is no "fate"

Zero-ILUC Biomass Potentials

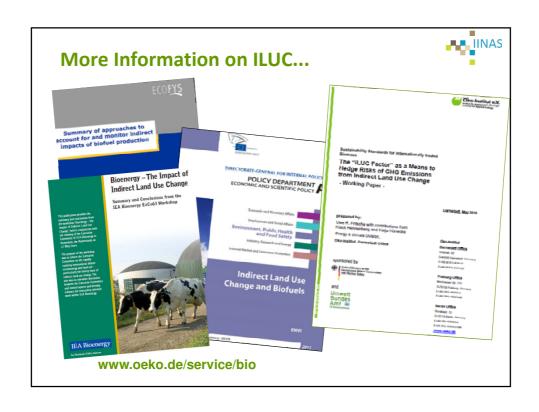
Land type	Area	energy	reference
degraded land	0.4-0.6 billion ha	8 - 110 EJ/a	Hoogwijk et al. (2003)
	2.50 billion ha (19% of land area)	~ 500 EJ/a	Metzger/ Hüttmann (2009)
abandoned land	0.4 billion ha	27 EJ/a	Field et al. (2008)
marginal and degraded land	1.1 – 1.4 billion ha	150-200 EJ/a	Cai, Zhang, Wang (2011)
		90 EJ/a	Wicke (2011)
water-scarce, marginal + degraded lands		70 EJ/a	ECN et al. (2009)

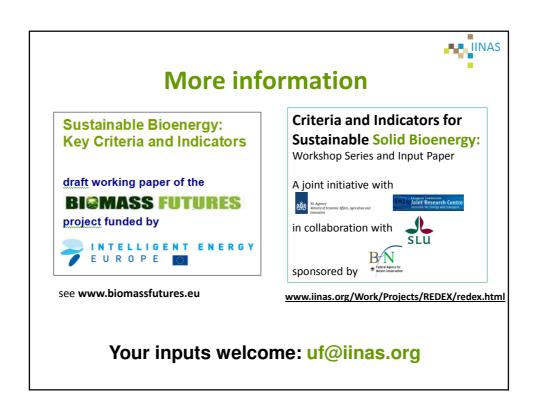
Global primary energy demand in 2010 ca. 530 EJ

Data given for <u>global</u> data <u>without</u> ground truthing – country studies show: correction factor needed, i.e. approx 20% conservative estimates realistic

→ up tp 5% of global energy demand

Other indirect effects


- impacts on biodiversity (e.g. destruction of habitats)
- intensification of agricultural production
 - additional GHG emissions
 - additional impacts on biodiversity
- social impacts (land rights, food prices, access to water)
- → price-induced iLUC also a social (distributive) issue


And: new discussion on indirect effects of forest bioenergy (displacement of non-energy uses)

Some Conclusions

- Models and simplified approaches give 10-100 g/MJ range for ILUC, depending on feedstock: "entry level"for regulation
- Consider cut-off date (2008) → approx. 5% share of 1G biofuels!
- Beyond models: dampen iLUC +
 strengthen climate convention to account
 for dLUC from all sources and all sectors in
 all countries (+ cap!)

